Principal Compliment Analysis Skip to main content

Indian Famous Monuments

  Golden Temple (Harmandir Sahib), Amritsar The holiest shrine and pilgrimage place located in Amritsar is The Golden Temple known as the Harmandir Sahib. This is the most famous and sacred Sikh Gurdwara in Punjab,  India , adorned with rich history and gold gilded exterior. If you are interested in culture and history, be sure to visit this popular attraction in India. Meenakshi Temple, Madurai Meenakshi Temple is situated on the Southern banks of Vaigai River in the temple city Madurai. This temple is dedicated to Parvati and her consort, Shiva and is visited by most Hindu and Tamil devotees and architectural lovers throughout the world. It is believed that this shrine houses 33,000 sculptures in its 14 gopurams. It’s no doubt one place to visit if you are impressed with art and cultural history. Mysore Palace, Mysore The Mysore Palace is a famous historical monument in the city of Mysore in Karnataka. Commonly described as the City of Palaces, this is the most famous ...

Principal Compliment Analysis

Principal Compliment Analysis

As you get ready to work on a PCA based project, we thought it will be helpful to give you ready-to-use code snippets. if you need free access to 100+ solved ready-to-use Data Science code snippet

The main idea of principal component analysis (PCA) is to reduce the dimensionality of a data set consisting of many variables correlated with each other, either heavily or lightly, while retaining the variation present in the dataset, up to the maximum extent. The same is done by transforming the variables to a new set of variables, which are known as the principal components (or simply, the PCs) and are orthogonal, ordered such that the retention of variation present in the original variables decreases as we move down in the order. So, in this way, the 1st principal component retains maximum variation that was present in the original components. The principal components are the eigenvectors of a covariance matrix, and hence they are orthogonal.
Importantly, the dataset on which PCA technique is to be used must be scaled. The results are also sensitive to the relative scaling. As a layman, it is a method of summarizing data. Imagine some wine bottles on a dining table. Each wine is described by its attributes like colour, strength, age, etc. But redundancy will arise because many of them will measure related properties. So what PCA will do in this case is summarize each wine in the stock with less characteristics.           
Intuitively, Principal Component Analysis can supply the user with a lower-dimensional picture, a projection or "shadow" of this object when viewed from its most informative viewpoint.
Image Source: Machine Learning Lectures by Prof. Andrew NG at Stanford University
  • Dimensionality : It is the number of random variables in a dataset or simply the number of features, or rather more simply, the number of columns present in your dataset.
  • Correlation It shows how strongly two variable are related to each other. The value of the same ranges for -1 to +1. Positive indicates that when one variable increases, the other increases as well, while negative indicates the other decreases on increasing the former. And the modulus value of indicates the strength of relation.
  • Orthogonal:  Uncorrelated to each other, i.e., correlation between any pair of variables is 0.
  • Eigenvectors:  Eigenvectors and Eigenvalues are in itself a big domain, let’s restrict ourselves to the knowledge of the same which we would require here. So, consider a non-zero vector v. It is an eigenvector of a square matrix A, if Av is a scalar multiple of v. Or simply:
Av = ƛv
Here, v is the eigenvector and ƛ is the eigenvalue associated with it.
  • Covariance Matrix: This matrix consists of the covariances between the pairs of variables. The (i,j)th element is the covariance between i-th and j-th variable.


Properties of Principal Component

Technically, a principal component can be defined as a linear combination of optimally-weighted observed variables. The output of PCA are these principal components, the number of which is less than or equal to the number of original variables. Less, in case when we wish to discard or reduce the dimensions in our dataset. The PCs possess some useful properties which are listed below:
  1. The PCs are essentially the linear combinations of the original variables, the weights vector in this combination is actually the eigenvector found which in turn satisfies the principle of least squares.
  2. The PCs are orthogonal, as already discussed.
  3. The variation present in the PCs decrease as we move from the 1st PC to the last one, hence the importance.
The least important PCs are also sometimes useful in regression, outlier detection, etc.

Comments

Popular posts from this blog

Arc de Triomphe Paris

Arc de Triomphe Paris  There is no doubt that everyone visiting Paris for a vacation is going to want to get a great shot in front of the world’s most famous Arch for Instagram. The  Arc de Triomphe Paris , the most monumental of all triumphal arches, was built between 1806 and 1836. Even though there were many modifications from the original plans (reflecting political changes and power struggles), the Arch still retains the essence of the original concept which was a powerful, unified symbol for France. The Arc de Triomphe stands at the center of the Place Charles de Gaulle, also known as the “Place de l’Étoile”. It’s located at the western end of the Champs-Élysées. The arches whole decorative style is entirely of the tradition of sculpture from the first half of the nineteenth century. The triumphal arch is in honor of those who fought for France (and in particular, those who fought during the Napoleonic wars). Engraved on the inside and at the top of ...

Natural resource management

Natural Resources Management Natural resource management  issues have attracted increasing attention in recent decades, particularly in Asia, partly in response to a sequence of crises in energy, food, water, and other resources. Effective governance and management of resources have always been important, but have become increasingly challenging in the face of changing climate, livelihoods, and market pressures. Many Asian countries have compromised their natural resource base for the sake of development, and are consequently facing various environmental challenges. The pressure on natural resources has potentially been aggravated by the development of infrastructure, advancement in extraction techniques, and expanding product markets that enlarge extraction opportunities for concession holders as well as local populations. Under such circumstances, the quality of land, water, and forest is threatened, and the regenerating capacity of resources is hardly guaranteed. T...

National Mall

National Mall the 2-mile-long expanse of open space extending from the U.S. Capitol to the Washington Monument and the Lincoln Memorial, and from the White House to the Jefferson Memorial — is a unique symbol of our American democracy and a national gathering place for civic celebrations and demonstrations. The monuments, open spaces, and majestic vistas represent the historic legacy of the L’Enfant Plan of 1791 and the McMillan Plan of 1901-02 for the Nation’s Capital. The 1791 L’Enfant Plan and the Mall In 1791, at George Washington’s request, Peter (Pierre)* L’Enfant drew up a plan for a city 10-miles square and centered on the Congress House (Capitol). The L’Enfant Plan laid out the Nation’s Capital as a physical embodiment of the newly ratified U.S. Constitution. The Capitol Building marked the city’s center and highest spot. Broad diagonal avenues named for the 13 colonies overlaid a grid of residential streets. Pennsylvania, site of the Constitutiona...